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Coefficient of restitution for viscoelastic disks
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The dissipative collision of two identical viscoelastic disks is studied. By using a known law for the elastic
part of the interaction force and the viscoelastic damping model an analytical solution for the coefficient of
restitution is given. The coefficient of restitution depends significantly on the impact velocity. It approaches 1
for small velocities and decreases for increasing velocities.
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I. INTRODUCTION

The coefficient of restitution is an important means to
characterize the damping properties of granular particles. It
is defined as

!
=5, (1)

8
with g being the absolute value of the normal component of
the relative velocity before and g’ the value after the colli-
sion. In most analytical and numerical studies of the behav-
ior of dilute or fluidized granular systems a constant coeffi-
cient of restitution was used (see, e.g., [1-6] and many
more). In experiments on [three-dimensional (3D)] spheres,
however, it has been found that this coefficient is not a con-
stant but depends significantly on impact velocity [7]. For
spheres there is a theory based on first principles which pre-
dicts this velocity dependence [8,9]. The aim of the present
paper is to use the methods successfully applied to spheres

for the description of the collisional properties of disks.

If we assume particles whose conservative interaction part
is linear with respect to the mutual compression and whose
dissipative interaction part is linear with respect to the rela-
tive velocity, the coefficient of restitution would indeed be
constant [10]. This can be very useful if one wishes to com-
pare results from molecular dynamics (or discrete elements)
simulations with the predictions from theory based on e
=const. Furthermore, if one considers particles in a precom-
pressed state (e.g., for dense systems), the linear force law
may be used as a leading-order approximation. Apart from
these practical considerations there are authors who use disks
as a real-world example of particles interacting via a linear
force law (see, e.g., [11,12]). However, it has been known for
several decades that the contact force law for colliding disks
differs significantly from a linear law [13]:

F,|. 4mRY
=~ -1-v|. (2)
Fel

Here £=2R—|r,—7,| is the compression of the particles of
radius R at positions 7/,. The material properties are charac-
terized by the Young modulus Y and the Poisson ratio v. One
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should note that in the present context “disk” means infi-
nitely long cylinder. The above expression is, thus, only ap-
proximately valid for disks of finite thickness (or cylinders of
finite length). For too thin disks the (implicit) force law (2)
may become wrong. Furthermore, surface properties, like
roughness, or imperfections, like bumps or indentations, are
completely neglected. Equation (2) can be solved for the
contact force Fy, yielding

wY§é wY§é
Fel=_ el+v == el+V§' (3)
Wol — 1
°< 4R g) " 4R

The function W, is the zeroth Lambert W function. It has two
real and infinitely many complex branches. One of them van-
ishes linearly as the argument vanishes; the others diverge as
the logarithm of the modulus of the argument. The first (van-
ishing) branch is irrelevant since it would yield a finite force
for infinitesimal deformation. The relevant details of W, are
summarized in the Appendix. The force law (3) was used to
study the coefficient of restitution of colliding disks where
energy was dissipated via excitation of internal degrees of
freedom of the disks—i.e., by excitation of vibrational
modes [14]. This dissipation mechanism will be neglected
here.

In this article we assume viscoelastic damping of the de-
formed particle material. For this damping mechanism the
material of contacting particles is assumed to be locally lin-
ear; i.e., the stress tensor depends linearly on both the defor-
mation tensor and the deformation rate tensor. If the impact
velocity is small enough, this assumption is reasonable. For
higher velocities other dissipation mechanisms, like plastic
deformation or the already mentioned excitation of vibra-
tional modes, have to be taken into account. The authors of
[15] used the viscoelastic model to study the contact of
spheres and found that the dissipative force component F;
is related to the conservative force F, via

'aFel
Fais=A§ o€ >

where (in 3D) F,, is the Hertz contact force. Subsequently
the above expression, Eq. (4), was derived using a crystal
mechanical approach [16]. The parameter A is proportional
to the viscous relaxation time of the particles and depends
only on the material constants and the geometry, such as the
radius of the particles. Due to the general nature of the argu-

(4)
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mentation from [15], it can be applied to the colliding disks
problem too. Inserting the force law, Eq. (3), into Eq. (4)
yields

WAY&

L B Y 5
T+ W°<_ 4R g)

With Eq. (4) the equation of motion reads

E+F A'%—o 6
Megeé + Foy + fo.'g =0, (6)
£0)=0, (7)
£0)=g. (8)

where repulsive forces are positive. We introduce rescaled
variables for length, force, and time,

e
= ¢ 9
=R 3 )

_ 1+v
F,=—""F,, 10
el ATRY el ( )

Y
=2, (11)

m

and define the scaled velocity v and the scaled damping pa-

rameter « by
_dx_ et m (12)
Tar 8 ar N oy

w=ary X, (13)

Introducing Egs. (9)—(13) into Egs. (6)—(8) we obtain

$4Fyraiitd g (14)
dx

x(0)=0, (15)

%(0)=v. (16)

There is a simple interpretation of v and a. We can rewrite
m=p'n'_R2 (with p being the material density) and find v
~gVp/Y. In a rough approximation one can estimate the
speed of sound by ¢~ \Y/p and thus

v~ =, (17)

¢
By a similar argument we find that «~Ac/R; i.e., a can be
estimated by the viscous relaxation time (which is the mean-
ing of the damping parameter A) divided by the time a sound
wave needs to travel through the cross section of the particle.
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FIG. 1. The rescaled elastic force Fe](x) as a function of the
rescaled compression x.

Obviously both v and « must be small compared to unity.
The implicit elastic force law in the rescaled variables
does not contain any dependence on material parameters:

X:—Fellnfe]. (18)
The explicit solution of Eq. (18) is

~ X

F,=-
T W)

(19)

and can alternatively be obtained substituting the normal
variables by the rescaled ones in Eq. (3). The rescaled force
as a function of the rescaled compression is given in Fig. 1.

The dissipative part of the interaction force [see Eq. (4)]
is

- dF, % X
Fiis=aXx—=—-«a — =-« .
dx 1+InF, 1+ Wo(=x)

(20)

In a straightforward approach the coefficient of restitution
can be found by integrating Newton’s equation of motion
and determining the trajectory of the particles, x(7); the du-
ration of the collision, 7,; and, eventually, e=—x(7,)/v. Here,
however, we use a different approach due to mathematical
difficulties resulting from the complicated form of the force
law.

In the next section, Sec. II, an approach which does not
rely on explicit knowledge of the trajectory is presented. The
method allows one to compute the dominant part of the en-
ergy loss during the collision. As a further advantage we do
not need to know explicit expressions for the damping force;
we only need to know its principal structure (4), which is
especially useful for more complicated force laws. In Sec. III
a method to further improve the obtained result will be
presented.

II. ENERGY BALANCE

The coefficient of restitution and the total energy loss dur-
ing a collision are related by
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AE

1-€= 2— (21)

The value of AE up to linear order in the damping parameter
a can be found without explicitly knowing the trajectory of
the particle. This procedure was successfully employed be-
fore to compute the coefficient of restitution for colliding
spheres [8,9,17,18]. We introduce the interaction potential ®
and rewrite the equation of motion (14),

d (% dF,
—<x—+¢>)=—ax2 o (22)
dr\ 2 dx
introducing the potential @ via
d®
Fy=—1=®&'. (23)
dx

Note that the customary negative sign is missing in the above
definition as we count repulsive forces positive. The poten-
tial energy shall vanish for vanishing deformation. The term
in brackets on the left-hand side of Eq. (22) is the total en-

ergy,

E=—+® (24)

(with initial value Ey=v>/2). Thus we can rewrite Eq. (22)
and obtain the energy balance equation

dE .zdﬁel - .
;=_ax dx = — FigsX.

(25)

For the total energy loss during the collision we thus find

T _dF,
AE=—- aJ d77&2—e],
0 dx

where 7, is the duration of the collision. To actually evaluate
this integral we would now need expressions for the trajec-
tory of the particles. However, for small damping the trajec-
tory will be close to the undamped trajectory xg—i.e., x(7)
=xo(7) +ax,(7)+O0(a?), where the first-order correction term
x; is well behaved for all practical collision problems. Insert-
ing this ansatz into Eq. (26) we find that we can estimate the
energy loss in linear order of a by evaluating the integral
along the undamped trajectory instead of the correct damped
one. We thus find

(26)

) .
n . dF

AE=-«a f dmi2— + 0(a?), (27)
0 dx

where 7" is the duration of the undamped collision. The force

fel has to be evaluated at the positions of the undamped
trajectory. This approximation allows us to determine AE
without explicitly knowing the trajectory. We split the inte-
gral into two parts:
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22 . dF, 7 dF.
AE =- af drx(%—d - aJ drxg el a?),
dx dx

0 2

(28)

where 77/2 is the time of maximum compression, where the
particles are momentarily at rest and start to separate again.
Since the trajectory is symmetrical with respect to this time,
the second part of the integral is exactly equal to the first:

o) dF
AE=- 2af ' dr)&% o a?). (29)
0 dx

Since in the interval (O,T(C)/ 2) the force is a monotonous
function of time we can replace the time, integral by an
integral over the (elastic) contact force—i.e.,

.dﬁel

drx ~el' (30)

Furthermore, we express the velocity of the undamped prob-
lem in terms of the potential energy, which gives

%= \2(E—-®) = \v? - 20, 31)
with v being the (scaled) impact velocity. Therefore,
ﬁmax ~ [
AE=-2a dF \v? =2® + 0(a?). (32)
0

We express the potential energy in terms of the force—i.e.,

P=d():

~ dD  dD dF,
Fy=—=—"7=4 (33)

ad  _ (dFy)"
—=Fy 4 .
dF,, x

From Eq. (18) we find dF./dx=—1/(1+In F,;) and thus

(34)

dd

___Fel(l +1In Fel) (35)
dF
With ®(x=0)=0 we find
F _
@:-f‘(nzlnm. (36)
Therefore
1+2 l F
AE=- 2av dd)\/ Fol - el) +0(d?).
(37)

The maximum elastic force fmax is related to the impact
velocity by inserting the energy conservation v>=2® into
Eq. (36):
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202=-F2 (1+2InF,,,). (38)

mdx

We will now use this expression to replace v in the integral

[the actual solution F,(v) will be given at a later stage of
the computation]:

[::max
E=—2avf d¢\/1
0

Substituting Fy=F,,,y with y from the interval (0,1) we
find

1
E=—2av¢>maxf dy\/l—
0

FA(1+21InFy)
(1+2InF,,)

0(a?).

max

(39)

y(1+2InF,, +2Iny)
(1+2InF,,)

+0(d?) (40)
2y% In
== 200 s J dy\/ -y -—22 o)
(1+21n Fmax)
(41)
! ) 2y2 lny
==200¢ma | dyN1 -y 4 [1- -
0 (1-y>(1+21InF,,,)
+0(a?). (42)
In the interval y € (0, 1) the relation
2y% In
- ly Y <1, 43)

holds. For sufficiently small impact velocity v we can, there-
fore, expand the second term in the integrand into a power
series with respect to the small term 2y®Iny/[(1-y?)(1
+21n ¢pax)]. With a; being the Taylor coefficients of the
expansion of \J'm around x=0 we find

* !
AE=-2avF > (- l)kakf dy\1 - y?
k=0 0

2y*1
X[ y-ny -
(l_yz)(1+21nFmax)

k
] +0(a?) (44)

©

— 1k
—2wF, _ D
k=0 (1+21n Fop)*

1
2,21
xf dy\/l—yz{ 1y Iylzy] +0() (45)
. -

o]

- Dke
—_ 2aUFmde #

+0(a?), (46)
=0 (1+21InF,, )"

with
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TABLE 1. First values for ¢, and d; (explanation given in
text).

k Cr dk
0 ks ks
4 16
1 T ?
T1-m4 “T(1-In4
Z(1-n4) " (1-In4)
2 —-0.02237433 0.250419
3 —-0.0076646 0.029518
I 2 k
—| 2y"Iny
ck:akf dyvl1 —yz{l—yz . (47)
0 -

For c; and ¢, there exist analytical expressions; the higher
coefficients have to be computed numerically. The first val-
ues of ¢, are given in Table I at the end of the next section.

We now have to find an expression for F max 1N terms of v.
The defining equation (38) can be solved in closed form
using again Lambert’s W function:

P W (48)
max — _ WO(_ 2602) ’
1+421n Fpppy = Wo(—2ev?), (49)

with the Euler constant e. Note that the function W, is nega-
tive for negative arguments. The final expression for the en-
ergy loss reads

_ s 2 - (- l)kck 3
AE = 2av _ WO(— 261)2)20 [WO(— 2602)]k + O(le )
(50)
=— \,8av22 + 0((1’2). (51)

0[ WO( 2 2)]k+1/2

The coefficient of restitution can now be determined with the
same accuracy—i.e., linearly in a. We have

e=\/1+A?E (52)

2AE
=\/1+— (53)
v
AE
~1+—. (54)
v

Inserting Eq. (51) we arrive at the final expression for the
restitution coefficient up to linear order in the damping pa-
rameter a:

\8a2

o [ Wo( 2 V)72 +0(d?). (59)
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For very small velocities this expression can be approxi-
mated as

1

l-e~ —— (56)
V= Wo(-2ev?)
VIn(1/2ev?)

in accordance to the previously published result of Hay-
akawa and Kuninaka [18]. However, for the approximation
(57) to be useful the expression In(1/2ev?) has to approxi-
mate the Lambert W function to a reasonable accuracy &. To
this end we have to require

1 1 1 3
>~ = , (58)
VIn(1/2ev?) 6\ \In(1/2ev?)
) 1
In(1/2ev”) > 5 (59)
v < e!2505 (60)

The critical velocity becomes exponentially small for in-
creasing accuracy requirements. This severely limits its ap-
plicability. The full solution (to linear order in a) Eq. (55)
does not suffer from this limitation.

The energy balance method unfortunately does not allow
the calculation of higher-order contributions to the energy
loss, since this would require detailed knowledge of the tra-
jectory. However, there is a method to calculate the contri-
bution proportional to &> which will be described in the next
section.

III. CONSISTENCY METHOD

In the previous section we have seen that the dominant
term of the restitution coefficient is linear in the damping
coefficient a. With the help of a novel method it shall be
attempted to improve the result to the next order in a. It will
be shown that for any viscoelastic problem of the form (4)
the second-order contribution to the coefficient of restitution
is completely determined by the first-order contribution. We
assume that the next largest contribution is quadratic in « or
generally that the restitution coefficient € can be expressed as
a power series in a:

e(v) = 2 dfilv). (61)
k=0

Note that the functions f;, do not depend on «. The zeroth
function f is 1 since the restitution coefficient has to be 1 for

undamped collisions (@=0). After the collision the relative

velocity of the two particles will be
v =€(v)v. (62)

Now we perform a time inversion; i.e., we start with the
velocity v’ at time 7. and let the time run backwards until at
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time =0 we arrive again at the initial velocity of the direct
collision v. The equation of motion of this inverse problem
reads

i+d-— a— =0. (63)
Comparing with the equation of motion of the direct (for-
ward time) collision (14) one notes that the only difference is
the sign of the damping coefficient «. In the inverse problem
we have a negative damping —«, so, in accordance with in-
tuition, the inverse collision is an accelerated one. We now
know the restitution coefficient of the inverse problem

e-inv(l-)) = E (_ Cl)kfk(l)) > (64)
k=0

again the only difference being the opposite sign of a. As
said before, starting the inverse collision at velocity v’ we
must arrive at the velocity v:

U= Einv(vl)v,- (65)

Inserting v’ from Eq. (62) into Eq. (65) we obtain the con-
sistency equation

em[vev)]elw)=1. (66)

Equation (66) has to be fulfilled for all restitution laws of the
form of Eq. (61) regardless of the internal contact mecha-
nism. Of course, different contact laws yield different veloc-
ity dependences for €(v) and €,,(v); however, the consis-
tency requirement, Eq. (66), in its general form remains
unchanged. Equation (66) allows us to calculate the second-
order correction to the first-order result, Eq. (55). We insert
Egs. (61) and (65) into Eq. (66) using fy,=1 and

filve)] =fk[v +2 akvfk(v)}
k=1

(67)
=fi(v) + v)E vfi(v)
2
;ff"(ﬁ o vfk(v)) (68)

and find

I=1- az(l)fl(v)fl—];(v) +f%(v)) +2a’f(v) + 0().
(69)

All terms on the right-hand side of linear or higher order in «
have to be zero which gives us the final expression for the
second-order term f5:

vfifi + 11

5 (70)

fa=
where f] means derivative with respect to the velocity v.
When computing higher orders one notes that, unfortunately,
terms of odd order in « vanish identically. We cannot, there-
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fore, compute terms of & of order higher than o since half of
the necessary equations are missing. From Eq. (55) we have

]

Fiv)=—+ o (71)

k=0 [- Wo(— 2602)]k+1/2

In order to calculate the first derivative of this expression
with respect to v we use

dWy(x Wo(x
d(;c( ) - X1 +0‘fV0)(x)] 72)
and find
[ o ck<k+ l)
fi= 2 : (73)

o[l + Wy(=2ev?) 15y [= Wo(=2e0?) 12

With this expression we can calculate vf,f]:

©

16 1
1+ Wy(=2ev?) (2o [- Wo(- 2ev?) ]!

vfifi=-

XE( k—i+— )cick_,». (74)

Finally f% reads

—82 2)]k+12 CiCri- (75)

o [ Wo(=2ev

f> can be expressed in the form

©

4 > d,
1+ Wy(=2ev?) (o [= Wo(=2e0H) ]

frv) = (76)

where the d; are purely numerical constants which can be
computed from cy:

dy=-c, (77)

k-1 k

dy==22 (k=i=1)ciChio = 2 CiChy
i=0 =0

for k> 0.

(78)

The first values of ¢, and d; are given in Table 1. For k=0
and k=1 analytical expressions for both ¢; and d; can be
found; the other constants have to be determined numeri-
cally.

We now have the final expression for the coefficient of
normal restitution up to second order in a:

=1- \r8a2

[ WO( 260 ]k+l/2

©

40° dy
+ > —.
1+ Wy(=2ev) 15 [= Wo(=2ev7)]

(79)

To check the analytical result the equation of motion (14) has
been integrated numerically for different values of the scaled
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FIG. 2. Coefficient of restitution of two colliding disks for vari-
ous values of a. The solid lines show the result of the numerical
integration of Eq. (14). The dashed lines are the analytical solution
up to second order in a [see Eq. (79)]. From top to bottom the
values of a are 0.02, 0.05, 0.1, and 0.2. To demonstrate the effect of
the second-order contribution in « the first-order result is shown
with a dash-dotted line. One notes a large difference to the numeri-
cal result.

impact velocity v. The result for @=0.1 is shown in Fig. 2
(solid line). Both analytical and numerical solutions agree
very well.

IV. CONCLUSIONS

In the present article the velocity dependence of the coef-
ficient of normal restitution of colliding identical disks was
derived. It turns out that it shows a significant dependence on
velocity. It approaches 1 (no damping) for small velocities
and decreases for increasing velocities. Consequently, for
freely cooling systems it is problematic to use colliding disks
as an example for particles with constant restitution coeffi-
cient. However, for driven systems the assumption of con-
stant restitution may remain justified. For the computation of
the coefficient of restitution it is not necessary to know exact
details about the trajectories of the particles during the col-
lision but instead a simple energy balance method together
with a consistency consideration is sufficient to derive an
analytical expression which is correct up to the second order
of the damping parameter. It can be expected that the kinetic
properties of gases of colliding disks differ significantly from
the properties of gases of particles colliding with constant
restitution coefficient. The analytic results for e(v) have been
compared with results obtained by numerically integrating
the equation of motion of the collision problem. Both solu-
tions are in good agreement.

ACKNOWLEDGMENTS

The author wants to thank Thorsten Pdschel and Nikolai
Brilliantov for helpful discussions.

APPENDIX: LAMBERT W FUNCTION

The Lambert W function of argument x is implicitly de-
fined by the following equation [19]:
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W(x)
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FIG. 3. Lambert W function for negative argument. The dashed
line is the (irrelevant) branch which approaches zero for x —0; the
solid line is the branch which displays the required behavior.

We" = x. (A1)
The defining equation has one real solution for positive val-
ues of x but two for negative x. Figure 3 shows a plot of this
function for the relevant case x <0.

One solution approaches zero like W(x) —x for x—0; the
other approaches —o. It is clear that the first solution [W(x)
—x] is unphysical since it would yield a force ¢p—1 as x
—0—i.e., a nonvanishing contact force for zero compres-
sion. To avoid confusion between the two branches the rel-
evant solution will be called W, instead of W. For small
negative values of x the function W, can be approximated by
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1 1
Wy = - ln(— —) —1In ln(— —).
X X

It shall be mentioned that there is no real W, for x<—e™!
(see again Fig. 3). This, however, is of no impact to our
solution since the we are restricted to small arguments both
in the force law, Eq. (19), as well as in the final solution, Eq.
(79). More specifically, an argument x=—e~' in Eq. (19)
would correspond to compressions comparable to the particle
radius, and in Eq. (79) it would correspond to velocities
comparable to the speed of sound in the material; both cases
are clearly beyond the limits of viscoelastic approximation.

The first derivative of the Lambert W function with re-
spect to its argument can be calculated by differentiating
both sides of Eq. (Al):

(A2)

aw
—"(1+W)=1, (A3)
dx
dw 1
— =, A4
dx  e"(1+W) (A4)
or using the defining equation again,
w X
—, A5
e = (A5)
aw__w_ A6
dc  x(1+W)’

These expressions hold for both real W functions (W and
Wo).
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